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Abstract

In this paper, we describe an iterative linear system solution methodology used for parallel unstructured finite

element simulation of strongly coupled fluid flow, heat transfer, and mass transfer with nonequilibrium chemical reac-

tions. The nonlinear/linear iterative solution strategies are based on a fully coupled Newton solver with preconditioned

Krylov subspace methods as the underlying linear iteration. Our discussion considers computational efficiency, robust-

ness and a number of practical implementation issues. The evaluated preconditioners are based on additive Schwarz

domain decomposition methods which are applicable for totally unstructured meshes. A number of different aspects

of Schwarz schemes are considered including subdomain solves, use of overlap and the introduction of a coarse grid

solve (a two-level scheme). As we will show, the proper choice among domain decomposition options is often critical

to the efficiency of the overall solution scheme. For this comparison we use a particular spatial discretization of the

governing transport/reaction partial differential equations (PDEs) based on a stabilized finite element formulation.

Results are presented for a number of standard 2D and 3D computational fluid dynamics (CFD) benchmark problems

and some large 3D flow, transport and reacting flow application problems.
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1. Introduction

Modern computational fluid dynamics simulations often require the solution of strongly coupled inter-

acting physics in complex three-dimensional (3D) geometries with high resolution unstructured meshes to

capture all the relevant length scales. After suitable spatial discretization and linearization, these simula-
tions can produce large linear systems of equations with on the order 105–108 unknowns. As a result

efficient and robust parallel iterative solution methods are required to make such simulations tractable

for use in analysis or in engineering design cycle times. Preconditioned Krylov iterative methods are among

the most robust and fastest iterative solvers over a wide variety of CFD applications [9,20,31,24,36,39]. In

the last decade, there has been a significant amount of work on parallel Krylov methods, and a number of

general purpose Krylov solver libraries have been developed [10,15,21]. In general, these Krylov methods

are relatively straightforward to implement, highly parallel, and are often ‘‘optimal’’ in some sense. While

the convergence characteristics of specific Krylov methods remains a topic of research interest, it is now
clear that the key factor influencing the robustness and efficiency of these solution methods is

preconditioning.

The focus of this study is to evaluate several different domain decomposition preconditioner variants for

the computational solution of incompressible and low Mach number variable density reacting and nonre-

acting fluid flows with unstructured mesh finite element methods. These flow problems are characterized by

both locally elliptic and nearly hyperbolic behavior, localized steep gradients, and often strongly coupled

interactions between the flow velocities, hydrodynamic pressure, temperature and chemical species. This

strong coupling results from the nonlinear transport terms in the governing PDEs as well as the localized
chemical reaction source terms (see Table 1). The discussion and comparison of the proposed methods are

framed in the context of steady-state solutions to the governing flow and transport equations. This context

provides a more numerically challenging comparison since the absence of the transient terms (in general)

produces a less well conditioned system of equations. The evaluated preconditioners fall into the family

of Schwarz domain decomposition methods [3,4,10,26]. These schemes partition the original domain into

subdomains and approximately solve the discrete problems corresponding to the individual subdomains in

parallel. Among Schwarz schemes, there are a number of choices which can greatly affect the overall

solution time and robustness. These choices include the subdomain size, the amount of overlap between
Table 1

Governing transport/reaction PDEs

Momentum
Rm ¼ q

ou

ot
þ qðu � ruÞ � r � T� qg

Total mass
RP ¼ oq

ot
þr � ðquÞ

Thermal energy
RT ¼ qĈp

oT
ot

þ u � rT
� �

þr � qc � /� _Qþ
XNs

k¼1

jk � Ĉp;krT

þ
PNs

k¼1

hkW k _xk þr � qr

Species mass fraction for species k
RY k ¼ q

oY k

ot
þ u � rY k

� �
þr � jk �W k _xk ; k ¼ 1; 2; . . . ;Ns
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subdomains, and the partitioning metric which can alter the shape and aspect ratio of subdomains (see, e.g.

[7,10–12,26]). The choices also include the selection of subdomain solver such as an incomplete LU factor-

ization (ILU) (with further options for dropping nonzeros in the factorizations and ordering equations

within a subdomain [1]), and the introduction of a coarse grid solve [9,35]. Therefore among these issues

we explore the effects of the choice of subdomain solver, the amount of subdomain overlap, and the effect
of exact and inexact coarse grid solvers for the two-level methods. The numerical studies include a variety

of fluid flow, transport, and a challenging reacting flow application. As will be demonstrated, the proper

choice among domain decomposition options is often critical to the efficiency of the overall solution

scheme.

The remainder of the paper is organized as follows. After presenting the transport equations in Section 2,

a brief overview of the parallel Newton–Krylov methodology is presented in Section 3 with a presentation

of the domain decomposition preconditioners. Section 4 briefly describes the problems used to generate the

numerical examples to evaluate the solution methods. The results of this comparison study are then pre-
sented in Section 5. Section 6 presents a brief discussion of the parallel efficiency of these methods. Appli-

cation of the methods to large-scale problems is presented in Section 7. Finally, in Section 8, a number of

conclusions are drawn.
2. The governing equations and numerical formulation

The governing transport PDEs describing fluid flow, thermal energy transfer, mass transfer and non-
equilibrium chemical reactions are presented in Table 1 in residual form. In these equations, the un-

known quantities are u, P, T and Yk; these are, respectively, the fluid velocity vector, the

hydrodynamic pressure, the temperature, and the mass fraction for species k. The equations include

constitutive relations for a Newtonian stress tensor T, the Fourier law for the heat flux vector qc,

and the Fickian diffusion fluxes jk. Additional quantities are the density, q, and the specific heat at con-

stant pressure, Cp. Wk is the molecular weight of species k, _xk is the volumetric reaction source term

for species k, and hk is the enthalpy of formation for species k. In the heat equation / is the volumetric

heat source term from viscous dissipation, _Q is a volumetric source term and qr is the radiation heat
flux vector (see [27] for more details). In the stabilized FE formulation of the equations, U is a generic

FE basis function, in our case these are linear basis functions on quads (2D) and hex elements (3D).

These residual definitions are used in the subsequent brief discussion of the discretization technique

based on a stabilized finite element (FE) formulation.

The continuous problem, defined by the transport equations, is approximated by a stabilized finite ele-

ment formulation [14,26,30,33]. This formulation allows for equal order interpolation of pressure and

velocity (without spurious pressure solutions), and for stabilization of highly convected flows. The resulting

stabilized FE equations are shown in Table 2.
The stabilization parameters sm, sT and sY k are given in [14,30,33]. For clarity in our later discussion of

the solution methods and linear algebra, the Newtonian stress tensor T is expanded to include the pressure

P and the viscous stress tensor term !. The resulting stabilized FE total mass residual equation in expanded

form is given in the following equation:
F P ¼
Z
X
U

oq
ot

þr � ðquÞ
� �

dXþ
Z
Xe

qsmrU � q
ou

ot
þ qu � ruþrP �r � !� qg

� �
dX: ð1Þ
This expansion exhibits the weak form of a Laplacian operator acting on pressure
Z
Xe

qsmrU � rP dX ð2Þ



Table 2

Stabilized FE formulation of transport PDEs

Momentum F m;i ¼
R
X URm;idXþ

R
Xe
qsmðu � rUÞRm;idX

Total mass F P ¼
R
X URPdXþ

R
Xe
ðqsmrU � RmÞdX

Thermal energy F T ¼
R
X URTdXþ

R
Xe
qĈpsT ðu � rUÞRTdX

Species mass fraction for species k F Y k ¼
R
X URY kdXþ

R
Xe
qsY k ðu � rUÞRY kdX; k ¼ 1; 2; . . . ;Ns
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produced by the stabilized FE formulation of the total mass conservation equation. In addition to the pres-

sure stabilization provided by this operator, this term also enables the development of effective Krylov

based solvers with various preconditioners [24,26]. Finite element (FE) discretization of the stabilized

FE equations gives rise to a system of coupled, nonlinear, nonsymmetric algebraic equations, the numerical

solution of which can be very challenging. These equations are linearized using an inexact form of Newton�s
method [6]. A formal block matrix representation of these discrete linearized equations is given in Eq. (3)

where the block diagonal contribution of the stabilization procedure has been highlighted by a specific

ordering. In this representation, the vector v 0 contains the Newton updates to all the nodal solution vari-
ables with the exception of the nodal pressures P 0. The block matrix A corresponds to the combined discrete

convection, diffusion and reaction operators for all the unknowns; the matrix B corresponds to the discrete

divergence operator with its transpose the gradient operator; the diagonal matrix R results from the group

FE expansion of the density and velocity; and the matrix K corresponds to the discrete ‘‘pressure Lapla-

cian’’ operator discussed above. The vectors Fv and FP contain the right-hand side residuals for Newton�s
method.

The existence of the well-conditioned nonzero matrix K in the stabilized FE discretization of the equa-

tions allows the solution of the linear systems with a number of algebraic and domain decomposition type
preconditioners. This is in contrast to other formulations, such as Galerkin methods using mixed interpo-

lation, that produce a zero block on the total mass continuity diagonal. The difficulty of producing robust

and efficient preconditioners for the Galerkin formulation has motivated the use of many different types of

solution methodologies. A number of these use two-level iteration schemes, penalty methods, pseudo-com-

pressibility techniques or decoupled/segregated solvers [36,39]. A detailed presentation of the characteristics

of current solution methods is far beyond the scope of this manuscript. However, the intent of our method

of fully coupling the transport PDEs in the nonlinear solver is to preserve the inherently strong coupling of

the physics with the goal to produce a more robust solution methodology. Preservation of this strong
coupling, however, places a significant burden on the linear solution procedure to solve the fully coupled

algebraic systems.
A �BT

BR K

" #
v0

P0

� �
¼

�F 0
v

�F 0
P

� �
: ð3Þ
Our current linear algebra solution procedure uses a specific ordering of the unknowns locally

at each FE node with each degree of freedom ordered consecutively ([u, v, w, P, T, Yi]). A sin-

gle coupled matrix problem, Js;= �F, is solved at each Newton step with sophisticated algebraic

domain decomposition and multilevel preconditioned Krylov methods to solve this system as de-

scribed below.
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3. Overview of parallel Newton–Krylov implementation

In this section, a brief overview of the parallel numerical solution procedure is presented. This discussion

provides context for the evaluation of the domain decomposition (DD) preconditioners. References are

provided to more complete sources on each of the topics.

3.1. Problem partitioning

Chaco [13], a general graph partitioning tool, is used to partition the FE mesh into subdomains and

make subdomain-to-processor assignments. Chaco constructs partitions and subdomain mappings that

have low communication volume, good load balance, few message start-ups and only small amounts of net-

work congestion. It supports a variety of new and established graph partitioning heuristics. For the results

in this paper, multilevel methods with Kernighan–Lin improvement were used. For a detailed description of
parallel FE data structures and a discussion of the strong link between partitioning quality and parallel

efficiency, see [9,26].

3.2. Newton–Krylov methods

A Newton–Krylov method [2,16,25] is an implementation of Newton�s method in which a Krylov iter-

ative solution technique is used to approximately solve the linear systems that are generated at each step of

Newton�s method. Specifically, to solve the nonlinear system F(x) = 0, we seek a zero of F: Rn ! Rn where
x 2 Rn is a current approximate solution. The Krylov iterative solver is applied to determine an approxi-

mate solution of the Newton equation
JðxÞs ¼ �FðxÞ; ð4Þ

where J(x) is the Jacobian matrix of F at x. A Newton–Krylov method is usually implemented as an inexact

Newton method [6,28]. That is, in approximately solving Eq. (4), one chooses a forcing term g 2 [0,1) and

then applies a Krylov method until an iterate sk satisfies the inexact Newton condition
kFðxÞ þ JðxÞskk 6 gkFðxÞk: ð5Þ

Intuitively one would assume that in the initial stages of the Newton iteration, when the current approx-

imation is far from the true solution, there would be no benefit from solving too accurately the Newton

equations with the inaccurate Jacobian matrix J(xk) that is currently available. Normally our inexact New-

ton method formulation uses an adaptive convergence criteria to reduce the amount of over-solving that

occurs and thereby to produce a more computationally efficient nonlinear solution procedure. To improve
robustness, a back-tracking algorithm can be used. This globalization method selects an update vector sk by

scaling a Newton step as needed to ensure that the nonlinear residual has been reduced adequately before

the step is accepted. The details of this inexact Newton implementation can be found in [28]. In the discus-

sion of results that follows we attempt to separate the issues associated with the nonlinear solution methods

and the linear systems solved by preconditioned Krylov methods. In this context we select a constant, mod-

erately small, value for the convergence criteria. Unless it is stated otherwise, we chose the convergence cri-

teria to be 10�4 to focus on the role of the preconditioners in the linear solver rather than allow adaptive

selection of the criteria.
3.3. Parallel preconditioned Krylov implementation

The linear subproblems generated from the inexact Newton method are solved by preconditioned

Krylov methods as implemented in our Aztec parallel iterative solver library [15]. The Krylov
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algorithms implemented in Aztec include techniques such as the restarted generalized minimal resid-

ual [GMRES(k)] and transpose-free quasi-minimal residual techniques for nonsymmetric systems. All

Krylov methods rely on a small, well defined set of basic kernel routines. These kernel routines con-

sist of parallel matrix–vector, vector–vector, vector inner-product, and preconditioning operations. In

our previous papers [24,26,29], we discussed in detail the implementation and parallel efficiency of
these Krylov kernel routines with the exception of the preconditioners. In this paper, we focus

on the preconditioner issues. To focus on the role of the preconditioning technique we present re-

sults only with the restarted GMRES(k) [22] Krylov solver (as these results are representative for

the other solvers as well).

It is well known that the overall performance of Krylov methods can be substantially improved when

one uses preconditioning [22]. The basic idea is that instead of solving the system Ax = b, the system

AM�1y = b is solved, where M�1 is an approximation to A�1 and is easily computed, Since only matrix–

vector products are needed, it is not necessary to explicitly form AM�1 (only software to solve Mv = y is
needed). We note that the preconditioning described here corresponds to ‘‘right’’ preconditioning; it is also

possible to precondition on the ‘‘left’’ (i.e.,M�1A). In this paper, only right preconditioning is considered as

the comparisons are more straightforward. Specifically, when left preconditioning is used the computed

residual corresponds to a preconditioned residual. Thus, if convergence is based on the size of the residual,

changing the preconditioner effectively changes the convergence criteria.

The preconditioners that are considered are based on algebraic additive Schwarz domain decom-

position (DD) preconditioners with variable overlapping between subdomains. For comparison pur-

poses, we also include some brief results based on classical iterative methods (Jacobi, block Jacobi
and polynomial expansions) as preconditioners. More details of these preconditioners can be found

in [24,26,29].

3.4. Additive Schwarz domain decomposition preconditioner

A formal description of the variable overlap additive Schwarz preconditioner can be described by con-

sidering the following linear system:
Au ¼ f ; ð6Þ

where A is an n · n nonsymmetric matrix and the matrix entry in the ith row and jth column is given by aij.

This matrix induces a directed graph which can be defined in the following way. Each row of A corresponds

to a vertex and each aij 6¼ 0 corresponds to an edge incident from node i to j. We denote the set of graph

vertices by V(A) and similarly the set of edges by E(A). Throughout the rest of this discussion, the argument

A in V(A) and E(A) will be dropped to facilitate the presentation. The set of edges and vertices defines a

matrix graph G(V,E).
Domain decomposition methods rely on approximate solutions on subdomains. These subdomains are

defined in terms of vertex subsets. To discuss vertex subsets we use the notation V i
k to denote the kth sub-

domain in an i-overlap method. For now, let us assume that V i
k is defined and corresponds to a subset of

vertices. The following edge set can be associated with the vertex subset
Ei
k ¼ fej ¼ ðx; yÞ 2 E j x 2 V i

k; y 2 V g: ð7Þ

Intuitively, Ei

k includes all edges emanating from V i
k. To complete the definition of the Schwarz method,

we must now define the vertex subsets. Assume that the vertices have been partitioned into p disjoint sets V 0
i

such that
V ¼
[p
i¼1

V 0
i ð8Þ
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and
V 0
i \ V 0

j ¼ [ 8i 6¼ j: ð9Þ
This vertex partitioning corresponds to the distribution of the matrix over the processors via Chaco and

effectively defines the 0th-overlap subdomains. To define the k-overlap subdomains, we use the edge sets

associated with the (k � 1)th-overlap subdomains:
V i
k ¼ fx 2 V j 9y 2 V ; where ðx; yÞ or ðy; xÞ 2 Ei�1

k g: ð10Þ

To define overlap in an ith-overlap additive Schwarz method, we use the vertex sets V i

k. Specifically, con-
sider the restriction matrix I ik of size mxn where m is the number of nodes in V i

k, n is the total number of

nodes in V, and
I ikðl; jÞ ¼
1 j is the lth node in V i

k;

0 otherwise;

�
1 6 k 6 p: ð11Þ
These I ik operators essentially map from the entire space to the kth subdomain. The ith-overlap additive

Schwarz preconditioner is now given by
M�1 ¼
Xp

k¼1

I ikððI ikÞ
TAIikÞ

�1ðI ikÞ
T
: ð12Þ
This method corresponds to projecting the equations onto a series of overlapping subdomains defined

by the vertex sets and solving each subsystem. Since these subdomain solves are independent, they can

be performed concurrently. Intuitively overlapping can be view as means to increase robustness by
expanding individual subdomains (to include FE nodes assigned to neighboring processors) by allowing

more coupling between subdomains (processors). In a geometric sense, this overlap corresponds to

increasing the size of the locally defined subdomain to include additional levels of FE nodes outside

of the processor�s assigned nodes. Thus a single level of overlapping uses only information from FE

nodes that are connected by an edge (in the FE connectivity graph) that was cut by the original sub-

domain partition. Successive levels of overlap now use this method recursively by considering the pre-

viously overlapped points to now be assigned nodes to the subdomain. As described this method would

be referred to as a one-level scheme. A two-level scheme uses not only the fine grid operator defined
above but also adds an additional projection of the original equations onto a coarser grid. That is,

a two-level domain decomposition method is given by
M�1 ¼
Xp

k¼0

I ikððI ikÞ
TAIikÞ

�1ðI ikÞ
T
; ð13Þ
where I ik is defined as above for k > 0 and I i0 is an interpolation operator that maps solution vectors from

the original FE mesh to an auxiliary coarser mesh that covers the same domain as the original but with

significantly fewer grid points. Theoretically, the number of mesh points should be about the same size

as the number of subdomains. When A is a symmetric positive definite discrete elliptic operator and a suf-
ficient amount of overlap is used, the iterative method convergence using a domain decomposition precon-

ditioner is independent of the number of unknowns in the matrix [32]. In cases where more modest overlap

is used, the theoretical convergence depends mildly on the size of the subdomains. In the case where A is

nonsymmetric, results have been obtained for single PDE systems [3]. Much less is known about coupled

systems of nonsymmetric PDEs. It is important to notice that with the addition of the coarse grid solve, the

domain decomposition method is no longer completely algebraic.

A number of practical simplifications can be made to the preconditioner described by Eq. (13). In par-

ticular, we rewrite the preconditioner as
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M�1 ¼
Xp

k¼0

I ikÂ
�1

k ðI ikÞ
T
; ð14Þ
where for Â0 we could use an independent discretization of the PDE problem on a coarse mesh and for the

Â
�1

k an approximate solver method on each subdomain can be used. In our experiments, we use Aztec [15]
to implement the one-level Schwarz method. Aztec automatically constructs the overlapping submatrices.

While a direct factorization could be used on the subdomains, our experience indicates that this is rarely

practical as the storage and time associated with this direct factorization is too high. Instead of solving

the submatrix systems exactly we use an incomplete factorization technique on each subdomain (processor).

In this paper, we use two specific ILU factorizations: the standard ILU(0) method with no fill-in as well as

the ILUT(fill-in,drop) incomplete factorization [19] which allows specification of a user-specified fill-in

parameter (fill-in P 1.0) and a drop tolerance. In this nomenclature, a fill-in of 1.5 denotes an ILU factor

with up to 1.5 times as many nonzeros as the original matrix. In the examples presented in Section 5, there
are no entries dropped due to magnitude (drop = 0.0).

The ML multilevel solver library [35] is used to implement the coarse grid solve of the two-level domain

decomposition method. There are several possibilities for generating I i0 including completely algebraic tech-

niques. In this paper, we use a technique based on the standard finite element basis functions. In particular,

the user supplies two meshes: the original fine grid FE mesh and a coarser grid FE mesh. Additionally, users

supply a call back function so that ML can evaluate the user�s coarse grid FE basis functions. Using this call

back function, ML constructs a grid transfer operator that corresponds to the interpolant associated with

the FE basis functions. The Â0 matrix can be generated by the matrix–matrix multiplication ðI i0Þ
TAIi0 or the

user can supply it. In this paper, Â0 is supplied by the application and corresponds to a finite element

discretization on the coarser mesh.
4. Numerical experiments

To illustrate the robustness, convergence and efficiency of the fully coupled domain decomposition pre-

conditioners, we present representative results for a number of 2D benchmark CFD type simulations as
well as some more challenging 3D CFD simulations and a challenging 3D reacting flow problem. The

important features of each of these test problems are summarized in Table 3. A more detailed description

of each of these problems is given in Appendix A. The example problems include straightforward Stokes

flow solutions to the momentum and continuity equations (without the convection operators); Navier–

Stokes solutions to the momentum and continuity equations; thermal convection flows of the momentum,
3

ary of numerical example problems

le problem Description Equations solved

2D Thermal convection in a square Momentum, total mass, thermal energy

3D Thermal convection in a cube Momentum, total mass, thermal energy

2D Lid driven cavity flow Momentum, total mass

2D Internal channel flow about an obstruction Momentum, total mass (Stokes, Navier–Stokes)

3D chemical vapor deposition (CVD) reactor for

GaAs deposition

Momentum, total mass, thermal energy, mass species – no

reactions

2D and 3D fluid flow and chemical agent

transport in a building

Momentum, total mass, mass species – no reactions

3D CVD reactor for poly-silicon deposition Momentum, total mass, thermal energy, mass species –

with reactions



32 J.N. Shadid et al. / Journal of Computational Physics 205 (2005) 24–47
continuity, and the thermal energy equations; and full reacting flow simulations of the momentum, conti-

nuity, thermal energy and mass species equations with chemical reaction source terms. The corresponding

FE discretizations of these problems include both structured and unstructured FE meshes. In general, the

structured mesh examples correspond to a number of well accepted 2D and 3D benchmark CFD problems

and provide a straightforward means of systematically increasing problems sizes for studying the robust-
ness, algorithmic scaling (convergence rate) and parallel performance of the DD preconditioners. These

results are then verified with the unstructured mesh examples that we present.

In the numerical studies comparing the one-level DD preconditioners and the block Jacobi and polyno-

mial preconditioners, GMRES uses a restart value of 200, which was sufficiently large that GMRES stag-

nation did not become an issue for even the most difficult of the linear subproblems generated by the

inexact Newton algorithm. We also allowed a maximum of 600 GMRES iterations at each inexact Newton

step, after which the GMRES iterations were terminated and a new inexact Newton step started even if the

convergence criteria did not hold. However, in cases where algorithmic scaling studies were carried out for
the one- and two-level methods we employed nonrestarted GMRES to isolate the growth in iterations due

to preconditioner performance as opposed to restarting effects. In these cases, the tables indicate that non-

restarted GMRES was used. In all cases, unless otherwise noted, the initial approximate solution was the

zero vector.
5. Results and discussion

5.1. An illustration of preconditioner choice and robustness

To illustrate the favorable robustness properties of DD preconditioners over classical iterative schemes

applied to fully coupled systems, we consider results for two 2D CFD benchmark problems (Example Prob-

lems 1 and 3). Each of these example problems is characterized by a nondimensional parameter that essen-

tially controls the strength of the convection transport mechanism to the diffusion process. As the Rayleigh

number Ra and the Reynolds number Re are increased, the nonsymmetry and the nonlinearity of the prob-

lem increases. In our results, we restrict our experiments to ranges of these parameters where the effects of
the linear solvers can be more clearly separated from the nonlinear solvers [25,28]. In Table 4, we present a
Table 4

Comparison of various preconditioners on thermal convection Example Problem 1

Preconditioner Mesh Ra

102 103 104 105

DD&ILUT(1.0,0.0) 32 · 32 4/251/10.1 5/327/12.8 7/451/17.6 9/562/22.9

64 · 64 4/470/45.6 5/748/66.0 7/1251/104.3 11/1701/147.5

100 · 100 5/2265/349.2 5/2425/367.0 9/4211/644.4 11/4333/683.0

1 Step block –Jacobi 32 · 32 11/6316/106.7 Failed Failed Failed

64 · 64 Failed Failed Failed Failed

3 Step block –Jacobi 32 · 32 5/846/30.4 6/1386/47.5 8/1940/66.4 11/2396/82.8

64 · 64 12/6807/656.5 Failed Failed Failed

5 Step block – Jacobi 32 · 32 4/327/18.4 6/455/25.6 8/662/36.7 11/966/53.2

64 · 64 11/5977/854.1 10/5243/753.1 Failed Failed

3 Order LS – Poly 32 · 32 5/1810/60.8 11/5307/174.6 Failed Failed

Results: Newton steps/linear its./CPU time (s).
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comparison of the number of Newton steps, the total number of restarted GMRES(128) iterations and the

time to solution for Example Problem 1 for three choices of preconditioners. These results compare two

classical iterative schemes used as preconditioners, a multi-step block Jacobi, a least squares polynomial

expansion (order = 1), and a one-level domain decomposition preconditioner that uses the ILUT precon-

ditioner within each processor subdomain with one level of subdomain overlap and no fill-in. The block
Jacobi method uses the Jacobian entries that correspond to all of the unknown at a particular node of

the FE mesh. The table presents the effect of increasing nonsymmetry (increasing Ra) and increasing mesh

size. From these results, it is clear that the simple multi-step block-Jacobi preconditioner is not robust

enough to solve the problem from a simple zero initial guess for the full range of Ra and meshes. The

preconditioner based on a least squares polynomial expansion lacks robustness as well. While these two

preconditioners are straightforward to implement in parallel, have low memory requirements and achieve

high computational rates [26], the robustness for solving difficult systems direct-to-steady-state is lacking.

In comparison, results are shown for the one-level DD ILUT preconditioner with no fill-in and one level of
overlap. In this case, it is clear that the most efficient and robust solution is obtained by the domain decom-

position preconditioner. These methods are also highly parallel (see Section 6) and can provide reasonably

robust and efficient solutions for CFD applications. However, the one-level DD schemes do exhibit a det-

rimental growth of the required iterations-to-solution as the mesh size decreases (or number of unknowns

increases). This decrease in convergence rate with increasing problem size has been theoretically predicted

for single unknown PDE systems [4]. As a further illustration, we present Table 5 that demonstrates a sim-

ilar lack of robustness for the multi-step Jacobi preconditioner as compared to the DD preconditioner as

the Re is increased in Example Problem 3.

5.2. Illustrations of the effectiveness of increasing ILU fill-in and overlap for DD preconditioners

In Tables 6 and 7, we present a comparison of the effectiveness of increasing fill-in and subdomain over-

lap for a domain decomposition preconditioner based on ILUT. These tables demonstrate that, in general,

increasing fill-in and overlap can decrease iterations and often CPU time as well. Table 7 presents results for

the fluid flow and transport calculations in the GaAs CVD reactor. In this case, we see a close connection

between fill-in and robustness. The ability to adjust parameters such as the fill-in and amount of overlap-
ping for Schwarz domain decomposition preconditioners allows solution algorithms to be adjusted to
Table 5

Comparison of multi-step block Jacobi and one-level DD preconditioners on lid driven cavity Example Problem 3

Preconditioner Re

100 500 1000

5 Step block – Jacobi 9/3110/331.8 Failed Failed

DD & ILUT(1.0,0.0) 6/404/41.3 10/809/75.3 13/1198/110.3

Results: Newton steps/linear its./CPU time (s).

Table 6

Effect of ILUT fill-in and level of overlap for thermal convection Example Problem 1, Ra = 10,000

Preconditioner Level of overlap

1 2 3 4

ILUT(1.0,0.0) 4200/756 3960/715 3072/590 2680/545

ILUT(2.0,0.0) 1974/418 819/205 729/205 663/220

ILUT(3.0,0.0) 1853/438 792/238 700/249 620/271

Results: iterations/CPU time (s).



Table 7

Effect of fill-in and level of overlap for GaAs CVD transport Example Problem 5

Preconditioner Level of overlap

1 2

Linear its. CPU time (s) Linear its. CPU, s

ILUT(1.0,0.0) Failed Failed Not run Not run

ILUT(1.5,0.0) 1873 1336 477 447
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produce more robust and often faster solutions. In general, while the number of iterations decreases with

increasing fill-in and overlap, there is a point of diminishing returns and CPU time does not decrease mono-

tonically. However, as can be seen in Table 7, the robustness of the increasing fill-in can sometimes mean
the difference between a convergent method and a nonconvergent method. In the context of the one-level

methods, this robustness comes at the expense of scalability. In the next section, the scalability of the one-

level and two-level methods is described. It should be noted that these same one-level DD methods have

been applied to reacting flow solutions for GaAs deposition in [26].
6. A comparison of one-level and two-level DD methods for 2D and 3D transport simulations

To illustrate the use of the two-level DD preconditioners as implemented in the ML library we present

characteristic results for a standard 2D benchmark thermal convection flow problem (Example Problem 1)

along with a generalization to a 3D problem (Example Problem 2). In this 2D benchmark problem [5], a

thermal convection (or buoyancy-driven) flow in a differentially heated square box in the presence of grav-

ity is modeled. The momentum transport, energy transport and total mass conservation equations defined

in Table 1 are solved on a unit square. No-slip boundary conditions are applied on all walls. The temper-

ature on the heated wall and other parameters are chosen so that the Rayleigh number Ra can be varied.

The 3D problem adds two no-slip insulated walls in the third dimension to form a 1 · 1 · 1 cube. A solution
for this problem with Ra = 1000 is shown in Fig. 5. These simple geometries facilitate algorithmic/parallel

studies as different mesh sizes can be easily generated. The results were obtained on the ASCI-Red Tflop

computer at Sandia National Laboratories, which consists of nodes with 333 MHz Pentium II Xeon pro-

cessors and 256 MB RAM.

In Figs. 1 and 2 and in Tables 8–10 results are presented for the algorithmic scaling of the one- and

two-level DD schemes applied to the solution of the thermal convection example problems. Figs. 1 and

2 presents graphically the average iteration count per Newton step as a function of problem size (also pro-

cessor count since the problem size per processor is fixed). In these computations the one-level method uses
a DD preconditioner with an ILU preformed on each subdomain with one level of overlap between sub-

domains. The two-level methods employ a fine grid smoother which is based on a pointwise Gauss–Seidel

iteration that is confined independently to each subdomain. The coarse grid solver for the two-level method

is either based on a direct sparse solver (SuperLU) or an approximate coarse solver as described below.

Clearly as the number of unknowns N is increased, the number of iterations to convergence for the one-

level schemes increases significantly. This increase is roughly proportional to N2/3 in 2D and N1/2 in 3D.

The two-level schemes are shown to be optimally convergent for the given fine-to-coarse grid ratio of 64

in 2D and 512 in 3D. The CPU time comparison indicates that while the two-level scheme can be faster,
careful attention needs to be directed to the coarse grid solve times. In the 2D cases, the serial version

of SuperLU is replicated on all processors to solve exactly the coarse grid problem; in the 3D case, a parallel

version of SuperLU was invoked. Since using all P processors to factor this small system is not efficient,



Fig. 1. Parallel and algorithmic scaling of iteration count and CPU time for one- and two-level DD preconditioners on 2D thermal

convection problem Example Problem 1. Ra = 1000.

Fig. 2. Parallel and algorithmic scaling of iteration count and CPU time for one- and two-level DD preconditioners on 3D thermal

convection Example Problem 2. Ra = 1000.
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groups of approximately P1/2 are utilized to solve a partially replicated linear system. Since the fine grid

smoother is highly parallel [26] and the fine grid work per processor is fixed, it is the SuperLU performance

on the increasingly larger coarse grid that causes an increase in the CPU time on the larger problems. Also

in Figs. 1 and 2, CPU time results are presented for the 2D and 3D problems. In both cases, the CPU time is
seen to increase as the coarse problem size grows. In the 3D case, the larger bandwidth or fill-in of the direct

factorization is apparent even for moderately sized coarse grid problems. However, by using even coarser

coarse grids or approximate solves instead of direct solves, it is possible to overcome the computational

bottleneck associated with this direct solve. In this study, as an approximate solve, we have applied one-

step of a DD ILU factorization with two levels of overlap between subdomains. These results, shown in



Table 8

Comparison of one-and two-level schemes for 2D thermal convection Example Problem 1

No. of processors Fine grid size Total unknowns One-level method Two-level method

Avg its. per

Newton step

Total

time (s)

Coarse grid

size

Avg its. per

Newton step

Total time (s)

1 32 · 32 4356 41 23 4 · 4 32 18

4 64 · 64 16,900 98 62 8 · 8 33 26

16 128 · 128 66,564 251 275 16 · 16 34 30

64 256 · 256 264,196 603 1399 32 · 32 31 46

256 512 · 512 1,052,676 1478 8085 64 · 64 30 107

Ra = 1000, Pr = 1. ASCI-Red, nonrestarted GMRES, one-level-ILU DD, two-level with 2 sweeps of Gauss–Seidel as Smoother,

Superlu Coarse Grid Solver. The fine-to-coarse grid ratio is 64.

Table 9

Comparison of one- and two-level schemes for 3D thermal convection problem

No. of processors Fine grid size Total unknowns One-level method Two-level method

Avg its. per

Newton step

Total

time (s)

Coarse grid

size

Avg its. per

Newton step

Total time (s)

1 8 · 8 · 8 3645 18 38 1 · 1 · 1 19 24

8 16 · 16 · 16 24,565 47 62 2 · 2 · 2 38 48

64 32 · 32 · 32 179,685 114 150 4 · 4 · 4 45 66

512 64 · 64 · 64 1,373,125 308 521 8 · 8 · 8 48 110

Ra = 1000, Pr = 1., nonrestarted GMRES, one-level-DD ILU, two-level with 2 Gauss–Seidel sweeps as a Smoother, Superlu Coarse

Grid Solver.

The fine-to-coarse grid ratio is 512.

Table 10

Comparison of one- and two-level schemes for 3D thermal convection problem

No. of processors Fine grid size Total unknowns One-level method Two-level method

Avg its. per

Newton step

Total

time (s)

Coarse grid

size

Avg its. per

Newton step

Total time (s)

4 16 · 16 · 16 24,565 40 123 2 · 2 · 2 36 101

32 32 · 32 · 32 179,685 112 282 4 · 4 · 4 44 107

256 64 · 64 · 64 1,373,125 296 863 8 · 8 · 8 47 179

2048 128 · 128 · 128 10,733,445 650 2915 16 · 16 · 16 47 546

4 16 · 16 · 16 24,565 40 123 2 · 2 · 2 42a 112a

32 32 · 32 · 32 179,685 112 282 4 · 4 · 4 56a 156a

256 64 · 64 · 64 1,373,125 296 863 8 · 8 · 8 73a 200a

2048 128 · 128 · 128 10,733,445 650 2915 16 · 16 · 16 114a 358a

Ra = 1000, Pr = 1., nonrestarted GMRES, one-level-DD ILU, two-level with two Gauss–Seidel sweeps as a Smoother, Superlu Coarse

Grid Solver.

The fine-to-coarse grid ratio is 512.
a Coarse grid solve corresponds to a DD ILU factorization/backsolve in parallel with two levels of overlap.
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the lower entries of Table 10, indicate that even this inexact coarse grid solve provides a suitable correction

to the fine grid problem to accelerate convergence. However, for this case, the optimal convergence prop-

erty is not obtained and a modest increase in the number of iterations is evident.
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The next example considers flow in a channel with an obstruction (Example Problem 4). The results

demonstrate the two-level Schwarz capability on an unstructured mesh problem for which the fine mesh

is not a refinement of the coarse mesh. In this study the meshes were independently generated and therefore

totally unrelated in structure (see Fig. 3). Since each mesh is partitioned separately by an automatic tool,

Chaco [13], the resulting mesh partitions are not aligned in any way. In this example, the one-level solver
uses a domain decomposition ILUT preconditioner with roughly twice as many nonzeros (fill-in = 2.0) as

the original matrix and two levels of subdomain overlap [26]. The two-level solver uses the standard DD-

ILU solver as a smoother with one level of overlap and employs a direct sparse solver (SuperLU) on the

coarse grid solution which is replicated on each processor.

The first example of flow for Example Problem 4, a Stokes flow, considers the scaling of the methods on

unstructured meshes. A typical coarse and fine mesh for this problem is presented in Fig. 3 along with solu-

tions on each grid. Clearly while the coarse grid solution is under-resolved, there is significant information

about the fine grid solution structure for this problem. As is evident from the convergence results presented
in Tables 11 and 12, optimal convergence rates are obtained along with faster solution times for the
Fig. 3. Stokes flow about an obstruction, Example Problem 4 . Two-level DD method uses two unrelated meshes. (a) Coarse mesh,

�150 elements; (b) coarse mesh solution, x-velocity contour plot; (c) fine mesh,�15,000 elements; and (d) fine mesh solution, x-velocity

contour plot.

Table 11

Stokes flow Example Problem 4

Procs Unknowns One-level Two-level

Iterations Time (s) Iterations Time (s)

16 4704 32 5.9 25 6.0

64 13,008 73 9.9 33 6.6

256 55,008 316 48.3 34 14.1

GMRES solver: one-level-preconditioner = ILUT(2.,.2), two-level smoother = Gauss–Seidel, coarse solver Superlu, fine/coarse mesh

ratio = 64.



Table 12

Stokes flow Example Problem 4

Procs Unknowns One-level Two-level

Iterations Time (s) Iterations Time (s)

16 18,240 52 34.1 41 33.1

64 50,976 136 60.9 59 34.5

256 217,920 704 390.2 77 70.5

GMRES solver: one-level-preconditioner = ILUT(2.,.2), two-level smoother = Gauss–Seidel, coarse solver Superlu, fine/coarse mesh

ratio = 256.
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two-level method for sufficiently large coarse grids. The CPU time scaling is again nonoptimal but still pro-

vides faster solutions than the corresponding one-level methods. As a final example of flow about the dia-

mond obstruction, we consider a Navier–Stokes flow in the same flow geometry and examine the role of the

fine grid smoother for the two-level methods. Table 13 presents the iteration count and CPU time to solu-

tion as a function of increasing Reynolds number Re. Clearly as Re is increased, the robustness and effi-

ciency of the two-level methods require a more robust smoother for the fine grid subdomains. The

development of appropriate smoothers for higher Re flows is an active area of research for multigrid as well

as two-level DD methods [34,38].
7. A comparison of one- and two-level methods for large-scale flow, transport and reaction simulations

In this section, we demonstrate the performance of the one- and two-level domain decomposition

preconditioners on two classes of large-scale applications. The first is a flow and transport problem that

simulates the dispersion of a chemical agent in a large-scale indoor structure (Example Problem 6). A

comparison of the performance of the one- and two-level methods is presented in Table 14. As demon-
strated in this table the two-level preconditioners can provide substantial increases in performance even

for modest sized problems. In 2D, execution time is reduced by a factor of roughly 90, and in 3D, by a

factor of about 2.3 for problems with less than one million unknowns. Additionally we demonstrate solu-

tions of very large problems with about 10 and 30 million unknowns in 2D and 3D, respectively, with the

two-level methods. Specifically for the 3D 30 million unknown flow and transport problem, there is a very

respectable solution time of less than two hours for a direct-to-steady-state calculation on 256 processors of

the Sandia Cplant machine. Cplant consists of nodes with Dec Alpha 500 MHz processors and 1 GB RAM

connected by Myrinet. For both the 2D and 3D cases, the convergence criterion for the linear solve was
chosen to be 4 · 10�4.
Table 13

Comparison of one- and two-level schemes for 2D Navier–Stokes flow past diamond obstruction (Example Problem 4)

Smoother Two-level with Jacobi

(2 sweeps)

Two-level with Gauss–

Seidel (2 sweeps)

Two-level with ILUT One-level DD ILUT

Re Newton

steps

Linear

its.

Time (s) Newton

steps

Linear

its.

Time (s) Newton

steps

Linear

its.

Time (s) Newton

steps

Linear

its.

Time (s)

1.0 4 996 3376.8 4 534 2065.7 4 301 645.9 4 831 2045.3

10.0 5 1442 5172.9 5 760 3001.6 5 415 917.6 5 1065 2633.0

100.0 – – – 12 5721 27439.7 8 687 1564.8 8 1460 3310.0

The fine mesh has 96,768 unknowns and the coarse mesh has 468 unknowns.



Table 14

Comparison of one- and two-level preconditioners for steady-state solve of fluid flow and transport of a chemical agent in a 2D and 3D

large-scale indoor structure for laminar flow conditions

Preconditioner Smoothers/coarse

solver

Fine mesh

unknowns

Coarse mesh

unknowns

Avg. its. per

Newton step

Total time (s) Computing hardware

2D 1-level DD ILU 619,300 10,720 500 10,460 20 1-GHz P3

2-level DD ILU/SuperLU 619,300 10,720 17 118 20 1-GHz P3

2-level DD ILU/SuperLU 9.8M 10,720 293 3266 128 procs CPlant

3D 1-level DD ILU 872,000 17,360 118 1801 16 1-GHz P3

2-level DD ILU/SuperLU 872,000 17,360 21 795 16 1-GHz P3

2-level DD ILU/GMRES 28.9M 68,320 40 5536 256 procs CPlant

Example Problem 6.
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Our last example problem is a 3D reacting flow simulation for the deposition of poly-Silicon in a hor-

izontal rotating disk reactor (Example Problem 7). This problem is a full reacting flow problem with un-

knowns for the three velocity components, hydrodynamic pressure, temperature, and 3 chemical species

(H2, SiCl3H, HCl). We present results for a simple continuation run, incrementally increasing the reactor

thermodynamic pressure from 0.6 atm to the operating pressure of 0.85 atm. This type of continuation pro-

cedure is a common technique to follow physically realistic paths through a complex nonlinear solution

space as often encountered in reacting flow simulations. In this context, it should be noted that, in some

sense, the one-level scheme benefits (or conversely the two-level method loses some of its advantage) be-
cause the coarse scales or global modes of the solution are approximately set by using the 0.6 atm solution

as a starting guess for the nonlinear scheme, and consequently in the linear subproblems that are generated

by Newton�s method. Preliminary results for this calculation are shown in Table 15, which presents the con-

vergence and CPU times for a set of three differently sized meshes for this problem. The problems sizes

range from 0.6 to 38 M unknowns and all of the two-level solvers use the same large (87,400 unknowns)

coarse mesh. The convergence criterion for the linear solve was chosen to be 3 · 10�4. The results indicate

reasonable performance for the largest of problems with the two-level method being on the order of 25%

faster that the one-level method. The solution to the very large 38M unknown problem requires about 2.25
h. on 1000 processors of CPlant. While the ratio of CPU time for the one-level to two-level method is not as
Table 15

Comparison of one- and two-level preconditioners for steady-state solve of reacting flow simulation of epitaxial silicon deposition in

3D CVD horizontal spinning disk reactor

Levels of Ref. Preconditioner Smoother/coarse solver Fine mesh

unknowns

Avg. its. per

Newton step

Total time (s) Computing hardware

1 1-level DD ILU 636,168 99 262 64 3-GHz P4

2-level DD ILU/ILU 636,168 50 249 64 3-GHz P4

2 1-level DD ILU 4,845,640 184 2971 64 3-GHz P4

2-level DD ILU/ILU 4,845,640 84 2204 64 3-GHz P4

1 1-level DD ILU 636,168 111 384 128 Procs CPlant

2-level DD ILU/ILU 636,168 53 406 128 Procs CPlant

2 1-level DD ILU 4,845,640 243 1186 1000 Procs CPlant

2-level DD ILU/ILU 4,845,640 124 1152 1000 Procs CPlant

3 1-level DD ILU 37,806,984 482 10,973 1000 Procs CPlant

2-level DD ILU/ILU 37,806,984 230 8174 1000 Procs CPlant

The coarse problem has 87,400 unknowns. Example Problem 7.
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impressive as the fluid flow or fluid flow with transport calculations presented earlier, there is still a benefit

to using the two-level method. In addition the same scaling or trend is visible in the results as the problem

size increases with the two-level method becoming faster. When interpreting these results it must be kept in

mind that this is a particularly difficult problem to solve and a direct-to-steady-state fully coupled solver is

being used. In this context, the convergence of the two-level preconditioner is encouraging. It should also be
noted that the two-level method is not always faster than the one-level method on this problem for the small

levels of refinement between the fine and coarse mesh. For one level of refinement, the fine mesh has eight

times as many elements as the coarse mesh, and the cost of the coarse mesh solve is significant compared to

the fine mesh solve, perhaps offsetting any gains from the reduction in iteration count.

When interpreting the results of one- and two-level methods there are at least two particular issues

about the current multilevel solution methodology that should be kept in mind to explain the less than

impressive results on the 3D CVD reactor problem. First, due to the limitation of accurately meshing

the complex 3D reactor geometry, the coarse problem is quite large. This required using an approxi-
mate ILU coarse grid solver instead of the direct sparse solver for the coarse grid problem and most

likely contributes to the only moderate reduction from 480 to 230 average linear solver iterations per

Newton step. In general this limitation of producing a coarse grid that reflects the underlying geometric

complexity is important. To eliminate this requirement we are pursuing a new aggressive coarsening

algebraic multigrid technique based on graph partitioning for coupled systems of equations [18]. Sec-

ondly, we believe that the possible indefiniteness of the chemical reaction source terms for this system

might also be contributing to the only moderate reduction of the iteration count. Currently we are con-

sidering, in more detail, this issue and exploring multi-level formulations which attempt to handle these
type of systems [37]. Clearly, further analysis and experimentation with these two-level methods in the

reacting flow context is required and is currently being pursued. However, we consider these modest

steps to be encouraging.
8. Conclusions

This set of numerical studies has presented a number of important issues related to efficient and robust
solution of unstructured FE flow solutions with heat and mass transport by parallel fully coupled New-

ton–Krylov solution methods. As presented, careful attention to problem formulation and the use of an

inexact Newton method with domain decomposition preconditioned Krylov based solvers can produce

efficient and robust solution algorithms on large-scale parallel supercomputers. These methods allow

the selection of algorithmic parameters such as the Krylov subspace dimension, the fill-in for incomplete

factorizations, and the level of subdomain overlapping for Schwarz domain decomposition precondition-

ers to tailor the robustness and computational efficiency of the resulting CFD solution method. As pre-

sented, the results verify that these methods can produce robust and efficient solution methods. As the
problem size increases, the scaling of the average iteration count per Newton step for the one-level fully

coupled domain decomposition preconditioners is roughly proportional to N2/3 in 2D and N1/2 in 3D.

This adverse scaling for large problems has been demonstrated to be reduced by the use of two-level

methods. Using these techniques we have demonstrated optimal algorithmic scaling for a range of fluid

flow and transport problems. The scaling of CPU time has not yet been demonstrated to be optimal.

However, the results have been very encouraging for fully coupled solution methods and have allowed

solution of large problems of O(107) unknowns for direct-to-steady-state computations in very respect-

able times. The use of approximate coarse grid solvers for the two-level methods has been demonstrated
to be effective to reduce the total CPU time for the large coarse-grid problems. These results are very

encouraging for the simulation of fluid flow with transport, an important subproblem of reacting flow

calculations. Currently, the one-level method is the standard preconditioner that we use for reacting flow
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simulations [26]. The reacting flow results presented in this study are the first applications of two-level

methods to our reacting flow problems; they are however, preliminary. For these reacting flows we have

demonstrated convergence of the one- and two-level methods for a large-scale reacting flow epitaxial-

Silicon CVD simulation as a final example. This problem with approximately 40M unknowns was solved

direct-to-steady-state in less than 2.5 h on a large-scale parallel machine, a very encouraging result. While
the two-level method was not significantly faster than the one-level method as in some of the nonreacting

flow cases, it did provide a performance increase over the one-level method in some of the computations.

In future work, we will consider further studies of these methods for reacting flows and study the effect

of strong convection (anisotropic behavior) and reaction (indefinite source terms) on convergence and

scaling of these methods.
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Appendix A. Example problem description

In the following section, we describe the test problems listed in Table 3 that make up the numerical stud-

ies. These examples consist of two 2D test problems (thermal convection, lid driven cavity) which are stan-

dard test problems, a 3D generalization of the 2D thermal convection problem, a 2D flow about a diamond

shaped body, two CVD reactor simulations and a fluid flow and transport calculation in a large-scale inter-

nal structure. In Table 3, a summary is provided of the specific governing PDE equations that are solved for

each example problem.

Example Problem 1. (2D thermal convection). In this standard 2D benchmark problem [5], a thermal

convection (or buoyancy-driven) flow in a differentially heated square box in the presence of gravity is

modeled. The momentum transport, energy transport and total mass conservation equations defined in

Table 1 are solved on a unit square. No-slip boundary conditions are applied on all walls. The temperature

on the heated wall and other parameters are chosen so that the Rayleigh number Ra can be varied. In Fig.
4, we show a typical solution of this problem with Ra = 1,000,000. A second parameter, the Prandtl number

Pr, is taken to be Pr = 1, implying that the diffusion of momentum and thermal energy are roughly

equivalent.

Example Problem 2. (3D thermal convection). The 3D Thermal convection example problem adds two

no-slip insulated walls in the third dimension to form a 1 · 1 · 1 cube from Example Problem 1. A typical

solution is shown in Fig. 5.

Example Problem 3. (Lid driven cavity). In this standard 2D benchmark problem [8,23], the momentum

transport and total mass conservation equations defined in Table 1 are solved on a unit square to simulate

confined flow driven by a moving boundary on the upper wall. No-slip boundary conditions are applied on

all other walls. As the Reynolds number Re is increased, the nonlinear inertial terms in the momentum

equation become more dominant and the solution becomes more difficult to obtain. A typical solution

for this problem is shown in Fig. 6.



Fig. 4. Contour plot of the temperature for Example Problem 1 at Ra = 1,000,000.

Fig. 5. Constantx-velocity iso surfaceswith streamlines and temperature contours on slice plane.Ra = 1000.Pr = 1, Example Problem2.
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Example Problem 4. (2D internal channel flow about an obstruction). In this internal channel flow example

the flow is accelerated about a diamond shaped obstruction at the center. The momentum transport and

total mass conservation equations defined in Table 1 are solved on a complex unstructured mesh. The

Stokes flow solution exhibits the isotropic flow field, whereas the Navier–Stokes solution at Re = 100

clearly shows the nonisotropic effect of the convection operator in the governing transport/reaction equa-

tions (see Fig. 7).

Example Problem 5. (Flow and transport in a 3D tilted chemical vapor deposition (CVD) reactor). This

example problem involves computing the 3D solution for fluid flow, heat transfer and the mass transfer
of three chemical species in a horizontal tilted chemical vapor deposition (CVD) reactor. Fluid enters in

the larger cross sectional area inlet and accelerates up the inclined surface with the inset rotating heated

disk. At the elevated disk temperature, chemical reactions are initiated to deposit gallium arsenide (GaAs).

In this example, we only transport the precursors for this reaction (tri-methylgallium, Ga(CH3)3, arsine,

AsH3) and a carrier gas (hydrogen, H2) and do not allow chemical reactions. In our example calculation,

the inlet velocity is 100 cm/s, the inlet temperature is 600 K, and the disk rotates at 200 rpm and is heated to

900 K. To simulate the deposition process, we use a Dirichlet condition on the reactants that introduces

significant diffusion gradients and boundary layers that approximate the average behavior of the full react-
ing system depositing GaAs on the rotating disk. In practice, CVD reactors are run at low pressures and



Fig. 6. Lid driven cavity. Contour plot of the stream function for Example Problem 3 at Re = 4000.

Fig. 7. Example Problem 4. Flow about a diamond shape obstruction. (a) Stokes flow solution. (b) Navier–Stokes flow solution and

FE mesh at Re = 100.0. x-velocity field contour plot shown.
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fluid velocities, and thus the Reynolds numbers are small (Re < 1). In addition, for gases at these temper-

atures and pressures, the Prandtl number and the Schmidt number for mass transport (analogous to the

Prandtl number) are approximately one as well. A typical reacting flow solution is shown in Fig. 8, where

the streamlines show the effect of the counterclockwise rotation of the disk. Included is a contour plot of

the concentration of tri-methylgallium at the heated surface [26]. This contour plot is from the full reacting

flow solution. For these experiments, the number of unknowns for the discretized problem was 384,200.

The number of Intel TFlop processors used was 48. The GMRES restart value was 150, with a maximum

of 600 GMRES iterations allowed at each inexact Newton step.



Fig. 8. Solution for the tilted CVD reactor used in Example Problem 5. Streamlines and filled contours of tri-methyl gallium are

shown.
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Example Problem 6. (Fluid flow and transport of a chemical agent in a building). This example problem sim-

ulates the flow and transport of a chemical agent in a large-scale indoor structure [18]. There are 2D and 3D

versions of this problem. The 2D structure is 11 m high and 105 m wide. The 3D structure is 11 m · 105

m · 24 m. In these example problems, Re is restricted to a lower than normal operating condition of one

order of magnitude in the 2D case and two orders of magnitude in the 3D case based on an inlet duct ref-
erence length and flow. The low Re allows us to quickly solve direct-to-steady-state with the DD solvers and

simplifies the presentation of the results. In addition, these lower Reynolds number solutions can sometimes

be used as initial guesses to attempt to solve mean-steady RANS type turbulence models in the same geom-

etries at higher Re. While we do not present the results here, we have also used the one- and two-level meth-

ods to solve for transient turbulent large eddy simulations (LES) at the standard operating conditions of the

ventilation systems. In Fig. 9 the upper inset figure shows the detailed steady-state streamlines of the flow in

the 2D structure along with color contours of a neutrally buoyant chemical agent (in this case SF6) that is

released at two locations on the lower floor of the structure. There are inlets on the sidewalls of both floors,
the ceiling of the lower level, and the floor of the upper level. Outlets are arranged on the ceiling of the

upper floor, and the main outlet collector is above an atrium (or opening) between the two floors. The

3D structure is shown in the lower inset figure and exhibits three iso-surfaces of SF6 from two source loca-

tions on the lower floor. There is a similar arrangement of inlets and outlets in the 3D model as well, with

the addition of extra inlets on the 105 m length face.

Example Problem 7. (Flow, transport and reaction in a 3D horizontal epitaxial-silicon CVD reactor). This is

an example of reacting flow through a CVD reactor and involves the solution for fluid flow, heat and mass
transfer of three chemical species. A mixture of trichlorosilane (SiCl3H), HCl, and H2 enters from the left,

flows over a forward facing step, and over an inset rotating disk. The disk is heated to 1398 K, which ini-

tiates chemical reactions to deposit silicon on the wafer. The reaction model of Kommu et al. [17] was used.

The top left figure in Fig. 10 shows the different side sets for the solid model. The top right figure shows an

example of the mesh partitioned for 48 processors. The bottom figure shows the contour plot of HCl mass

fraction on the rotating disk surface and the flow streamlines. Three different sized meshes were used for

this calculation to give 0.6, 4.8, and 37.8 M unknowns.



Fig. 9. 2D and 3D fluid flow and chemical agent transport in a building Example Problem 6.

Fig. 10. Flow, transport and reaction in a 3D horizontal epitaxial-silicon CVD reactor, Example Problem 7. Upper images: solid

model and partitioned subdomains for parallel execution. Lower image: flow streamlines and a color contour plot of HCl mass fraction

on the rotating disk surface.
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